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What is a Radioisotope Thermoelectric Generator?

� Long life, high reliability DC electrical power
source

� Converts heat from a radioisotope heat source
to electricity

� Contains a nuclear radioisotope heat source,
thermoelectric converter and a radiator

� Thermoelectric converter contains many
couples connected in series and parallel
networks

� Unicouples consist of two semiconductor
thermoelectric legs (p and n) placed between
hot and cold temperatures

� Efficiency of the couple depends on the
thermoelectric properties of  the unicouple (ZT)
and temperature difference between hot and
cold ends
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Flight Demonstrated Radioisotope Thermoelectric Generators
(3 Most Recently Flown Designs)

285 We (BOM)

6.8% system efficiency

5.1 We/kg

114 cm (44.9 in) long

42.7cm (16.8in) dia

56 kg (123 lb)

SiGe Thermoelectrics

Galileo, Ulysses, Cassini

& New Horizons

158 We (BOM)

6.6 % system efficiency

4.2 We/kg

58.4 cm (23 in) long

39.7 cm (15.64 in) dia

38 kg (83.7lb)

SiGe Thermoelectrics

LES 8/9, Voyager 1/2

40.3 Watts (BOM)

6.2 % sytem efficiency

3 We/kg

22.86 cm (9.0 in) long

50.8 cm (20 in) dia

~13 kg (28.6 lb)

PbTe Thermoelectrics

Nimbus B-1/III,  Pioneer 10/11,

  Viking 1/2

SiGe GPHS RTG

(1980-2006)

SiGe MHW RTG

(1970’s)

SNAP-19(PbTe RTG)

(1960-70’s)
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MMRTG Characteristics

� Electrical Power Output: ~ 123 W (BOL)

� Specific power: ~ 2.8 We/kg

� System Efficiency ~ 6.2%

� Voltage 28 VDC

� In-space & surface operational capability

� Qualified for 0.2 g2/Hz random vibrations

� Mission life design ~14 years

� Mass: ~ 44.1 kg

� Dimensions (half that of GPHS-RTG):

� Length ~64 cm

� Diameter ~64 cm

� 8 GPHS modules

� Thermal Power Input ~ 2000 W (BOL)

� 768 PbSnTe/TAGS+ PbTe couples

� Thot ~ 811 K;

� Tcold ~ 483 K

MMRTG Under Development For MSL And Other Future Deep Space And Surface Missions

TAGS

PbTe

PbSnTe

PbSnTe/TAGS+ PbTe couples

MMRTG

Mars Science Laboratory (MSL)
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NASA Advanced RTG Needs

13 - 1510System Efficiency (%)

Step 2 GPHS

(1 to 12 units)

Step 2 GPHS

(8 to 12 units)

Heat Source

> 14 years

< 22% degradation

> 14 years

< 22% degradation

Lifetime

> 20202015 - 2016Readiness

> 106 - 8Specific Power (W/kg)

Long Term

(>2020)

Near Term

(~2015)



Pre-Decisional – For Discussion Purposes Only

Advanced Thermoelectric Technology

Programs at JPL

� Near Term Advanced RTG Development

Project

� Advanced Thermoelectric Converter (ATEC)

Development

� Far Term Advanced RTG Development

Tasks

� Si-Ge Nanocomposites

� Advanced Thermoelectrics R&T
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Advanced Thermoelectric Converter (ATEC)

Major Objectives:

• Develop and demonstrate advanced thermoelectric

converter capable of supporting a deep space RTG with

6-8 We/kg and 14 year lifetime.

• Develop and demonstrate couple with 11-12%

conversion efficiency

• Demonstrate at least 1 year of lifetime operation on both

couples and 4-couple modules

• Prediction of maximum of 22% power degradation

(including isotope decay) over 14 years

FY’06 Select primary & back-up high temperature TE materials

FY’07 Develop updated TE materials database

Validate couple power output within 10% of predict

FY’08 Validate 4-couple module power output within 10% of predict

Complete couple fabrication and assembly specification

FY’09 Validate 1 year of couple life with < 0.33% degradation

Benefit: 110-180% RTG Specific Power Increase and 28 -

60% system conversion efficiency increase over MMRTG

PM: Rao Surampudi

PI: Thierry Caillat

Participating Organizations: JPL, GRC, USC, MSFC, Systems

contractor

Milestones:
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Projected Performance

� High ZT( >1.0) thermoelectric materials

� Higher efficiency

� Segmented couples

� Each segment optimized for maximum performance

� Large Delta T: (1275 to 525 K Operation)

� Higher efficiency

� Sublimation Control

� Aerogel

� Metal/metal oxide coatings

p- Ce1Fe3Ru1Sb12
n- CoSb3

Cold-shoe Cold-shoe

Heat Source

Heat Sink

p- HT material

• Yb14MnSb11

• HT-SKD
• Nanostructured

SiGe

n- HT material

• MA SiGe

• HT-SKD
• LaTe1.4

T ~ 1275K

T ~ 875K

T ~ 525K

� Metal/metal oxide coatings
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Synthesis Approach for Scalability

Spex High Energy Ball Mill

� Vial load capacity 10 – 15g

� Double vials system

� Back-and-forth shaking motion

� Balls impact with powder and vial

� ~ 1200rpm, vial swing ~ 5cm

� Making the force of the balls impact very high

Planetary Low Energy Ball Mill

� Vial load capacity – few hundred grams

� Two or four vials system

� Planet-like movement of its vials

� Centrifugal force produced by the vials

rotating around their own axes and produced

by the rotating support disk both act on the

vial content

� Low impact synthesis process

Spex Mill

Planetary Mill
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High Temperature Thermoelectric Materials Results:

p- type Zintl

� Thermoelectric Properties
� ZT > 1 at 1275K

� Synthesis process
� Mechanical alloying

� Reproducibility
� TE properties reproduced on >10

batches

� Scalability
� 15g batches demonstrated

� 50g batches by end of 2006

� Mechanical Properties
� Initiated Young and shear modulus,

Poisson’s ratio, fracture toughness,
flexural strength

� Sublimation
� BOL (~ 5 x10-3 g/cm2 /hr at 1275K)

� Segmentation
� Co-hot-pressed several legs

(promising)

� Some remaining challenges
� Achieve sublimation goal of ~ 10-7 g/cm-

2 /hr through use of sublimation
suppression coatings

� Demonstrate TE property stability over
time

� Segmentation to low-T SKD material

ZT values for Yb14MnSb11 material

,
,
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High Temperature Thermoelectric Materials:

p - type NanoSiGe (MIT/JPL)

� Thermoelectric Properties
� ZT approaching 1 at 1275K

� Synthesis process
� Mechanical alloying

� Reproducibility
� In progress

� High temperature Stability
� Demonstrated stability of TE properties for 750

hrs at 1275K under MIT / JPL NRA task

� Scalability
� 15g batches demonstrated

� 50g batches by end of 2006

� Mechanical Properties
� Will be initiated by end of 2006

� Sublimation
� Plan to measure BOL sublimation and compare

with RTG materials

� Si3N4 coatings (GPHS-RTG SiGe)

� Segmentation
� GPHS-RTG heritage – for metallization

� Need to develop segmentation to low-T SKD if
needed

� Remaining challenge:
� Demonstrate batch to batch reproducibility and

scalability

� Further demonstrate TE property stability over
time

Potential Backup

material for Zintl
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High Temperature Thermoelectric Materials:

n - type SiGe

� Thermoelectric Properties

� ZT ~ 1.1 at 1275K

� Synthesis process

� Mechanical alloying

� Scalability

� 15g batches demonstrated

� 50g batches by end of 2006

� Reproducibility

� ZT ± 10% of 4 consecutive batches

� Sublimation

� Si3N4 coatings used for GPHS-RTG SiGe

� Plan to measure BOL sublimation and

compare with GPHS-RTG SiGe

� Segmentation

� RTG heritage – for metallization

� Need to develop segmentation to low-T

skutterudite

� Mechanical Properties

� Measurements initiated

� Expected to be similar to GPHS-RTG

SiGe

� Issues / concerns

� Achieve higher ZT > 1 at 1275K

Improved mechanically

alloyed SiGe
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High Temperature Thermoelectric Materials

n - type LaTe1.4

� Thermoelectric Properties

� Not measured yet for optimized samples

� Goal is ZT ~ 1.2 at 1275K

� Reproducibility

� Not yet

� Scalability

� 15g batches

� Mechanical Properties

� Not yet

� Sublimation

� Not yet

� Segmentation

� Not yet

� Remaining challenges

� Develop reproducible mechanical alloying
synthesis process

� Optimize TE properties by controlling La to
Te ratio

N-LaTe1.4

• Potential backup for mechanically

alloyed n- SiGe

• Pay back is potentially high since

this material offers high ZT > 1 at

high temperatures
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ZT summary
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Low-T skutterudite development

Mechanical Properties

40mm x 7mm puck

Sublimation Suppression Control Disks

12mm x 1.5mm disks

CTE and Compression

6.4mm x 25mm
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Sublimation Rates Life Tests at 875 K for n- and p-

type low-T SKD Aerogel Encapsulated Coupons

� Demonstrated that the desired sublimation rate ( <5 x 10-7 g/cm2hr) for 14 years of

operation can be achieved up to 875K for aerogel-encapsulated low-T skutterudites

after up to 4000 hours of testing
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Low-T skutterudite -unicouple performance testing

Skutterudite unicouple with Nb

hot-shoe

Machined
aerogel

sleeve

Nb hot-
shoe

Voltage
measurement
contacts

Thermocouple
 holes for measuring
hot-side temperature

Cooling loop

Thermocouple holes for
measuring cold-side
temperature for each leg

Shielded
heater

Load ~ 3 lbs
per leg

Cu cold-shoe
connected to
spring loaded
piston through a Cu
plated Al2O3
electrical insulator

T = 300 K ± 10K

� Initiated performance life testing of spring-loaded low-T

skutterudites unicouples

� In-gradient testing with THot ~ 875 K ± 10K and TCold = 300 K ± 10K

� Vacuum environment (10-6 Torr)

� Power output vs. load current at constant hot-shoe temperature
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Low-T skutterudite unicouple performance life testing

Skutterudite unicouple

with Nb hot-shoe

� ATEC 2:

� P-leg: CeFe3Ru1Sb12

� N-leg: CoSb3

� Thot ~ 925K

� Tcold ~ 300K

� ATEC 4:

� P-leg: CeFe3Ru1Sb12

� N-leg: CoSb3

� Thot ~ 875K

� Tcold ~ 300K
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Summary

� Summary

� RTG’s have enabled surface and deep space missions since 1961

� 26 flight missions without any RTG failures

� Mission durations in excess of  25 years

� Future NASA missions require RTG’s with high specific power and

high efficiency, while retaining long life (> 14 years) and high

reliability

� 6-8 W/kg,  10-15% efficiency

� JPL in partnership with NASA-GRC, NASA-MSFC, DOE, Universities

and Industry is developing advanced thermoelectric materials and

converters to meet future NASA needs

� Acknowledgements

� NASA Science Missions Directorate/ Radioisotope Nuclear Systems

and Technologies


